Marco automático de diagnóstico basado en la IA permite la detección de la COVID-19 usando imágenes de rayos X del tórax
Por el equipo editorial de HospiMedica en español Actualizado el 17 Jan 2022 |

Ilustración
Un marco nuevo de aprendizaje automático podría aliviar el trabajo de los radiólogos al proporcionar un diagnóstico rápido y exacto de la COVID-19 a partir de imágenes de rayos X del tórax.
Un equipo de científicos de la Universidad Nacional de Incheon (Incheon, Corea) desarrolló un marco de diagnóstico automático de COVID-19 que mejora las cosas al combinar dos técnicas poderosas basadas en inteligencia artificial (IA). Su sistema se puede entrenar para diferenciar con exactitud entre las imágenes de rayos X de tórax de pacientes con COVID-19 de los que no tienen la enfermedad.
Varios estudios han informado que los sistemas basados en IA se pueden usar para detectar la COVID-19 en imágenes de rayos X de tórax porque la enfermedad tiende a producir áreas con pus y agua en los pulmones, que aparecen como manchas blancas en los exámenes de rayos X. Aunque se han propuesto varios modelos de IA de diagnóstico, basados en este principio, mejorar su exactitud, velocidad y aplicabilidad sigue siendo una prioridad.
Los científicos desarrollaron el nuevo sistema de detección de COVID-19 combinando los dos algoritmos Faster R-CNN y ResNet-101. El primero es un modelo basado en aprendizaje automático que utiliza una red de propuesta de región, que se puede entrenar para identificar las regiones relevantes en una imagen de entrada. El segundo es una red neuronal de aprendizaje profundo que consta de 101 capas, que se utilizó como columna vertebral. Cuando se entrena a ResNet-101 con suficientes datos de entrada, es un modelo poderoso para el reconocimiento de imágenes.
Los científicos creen que su estrategia podría resultar útil para la detección temprana de COVID-19 en hospitales y centros de salud pública. El uso de técnicas de diagnóstico automático basadas en tecnología de IA podría quitarles algo de trabajo y presión a los radiólogos y otros expertos médicos, que han tenido que enfrentar enormes cargas de trabajo desde que comenzó la pandemia. Además, a medida que los dispositivos médicos más modernos se conecten a Internet, será posible alimentar grandes cantidades de datos de entrenamiento al modelo propuesto; esto dará como resultado exactitudes aún mayores, y no solo para la COVID-19.
“Hasta donde sabemos, nuestro enfoque es el primero en combinar ResNet-101 y Faster R-CNN para la detección de la COVID-19”, dijo el profesor Gwanggil Jeon de la Universidad Nacional de Incheon, quien dirigió el equipo. “Después de entrenar nuestro modelo con 8800 imágenes de rayos X, obtuvimos una exactitud notable del 98 %”.
“El enfoque de aprendizaje profundo utilizado en nuestro estudio es aplicable a otros tipos de imágenes médicas y se podría usar para diagnosticar diferentes enfermedades”, agregó el profesor Jeon.
Enlace relacionado:
Universidad Nacional de Incheon
Un equipo de científicos de la Universidad Nacional de Incheon (Incheon, Corea) desarrolló un marco de diagnóstico automático de COVID-19 que mejora las cosas al combinar dos técnicas poderosas basadas en inteligencia artificial (IA). Su sistema se puede entrenar para diferenciar con exactitud entre las imágenes de rayos X de tórax de pacientes con COVID-19 de los que no tienen la enfermedad.
Varios estudios han informado que los sistemas basados en IA se pueden usar para detectar la COVID-19 en imágenes de rayos X de tórax porque la enfermedad tiende a producir áreas con pus y agua en los pulmones, que aparecen como manchas blancas en los exámenes de rayos X. Aunque se han propuesto varios modelos de IA de diagnóstico, basados en este principio, mejorar su exactitud, velocidad y aplicabilidad sigue siendo una prioridad.
Los científicos desarrollaron el nuevo sistema de detección de COVID-19 combinando los dos algoritmos Faster R-CNN y ResNet-101. El primero es un modelo basado en aprendizaje automático que utiliza una red de propuesta de región, que se puede entrenar para identificar las regiones relevantes en una imagen de entrada. El segundo es una red neuronal de aprendizaje profundo que consta de 101 capas, que se utilizó como columna vertebral. Cuando se entrena a ResNet-101 con suficientes datos de entrada, es un modelo poderoso para el reconocimiento de imágenes.
Los científicos creen que su estrategia podría resultar útil para la detección temprana de COVID-19 en hospitales y centros de salud pública. El uso de técnicas de diagnóstico automático basadas en tecnología de IA podría quitarles algo de trabajo y presión a los radiólogos y otros expertos médicos, que han tenido que enfrentar enormes cargas de trabajo desde que comenzó la pandemia. Además, a medida que los dispositivos médicos más modernos se conecten a Internet, será posible alimentar grandes cantidades de datos de entrenamiento al modelo propuesto; esto dará como resultado exactitudes aún mayores, y no solo para la COVID-19.
“Hasta donde sabemos, nuestro enfoque es el primero en combinar ResNet-101 y Faster R-CNN para la detección de la COVID-19”, dijo el profesor Gwanggil Jeon de la Universidad Nacional de Incheon, quien dirigió el equipo. “Después de entrenar nuestro modelo con 8800 imágenes de rayos X, obtuvimos una exactitud notable del 98 %”.
“El enfoque de aprendizaje profundo utilizado en nuestro estudio es aplicable a otros tipos de imágenes médicas y se podría usar para diagnosticar diferentes enfermedades”, agregó el profesor Jeon.
Enlace relacionado:
Universidad Nacional de Incheon
Últimas COVID-19 noticias
- Sistema de bajo costo detecta el virus SARS-CoV-2 en el aire del hospital mediante burbujas de alta tecnología
- China aprueba la primera vacuna inhalable contra la COVID-19 del mundo
- Vacuna en parche contra la COVID-19 combate variantes del SARS-CoV-2 mejor que las agujas
- Pruebas de viscosidad sanguínea predicen riesgo de muerte en pacientes hospitalizados con COVID-19
- ‘Computadora Covid’ usa IA para detectar COVID-19 en exámenes de TC de tórax
- Técnica de resonancia magnética muestra la causa de los síntomas de COVID prolongada
- TC del tórax de los pacientes con COVID-19 podrían ayudar a diferenciar entre las variantes del SARS-CoV-2
- Resonancia magnética especializada detecta anormalidades pulmonares en pacientes no hospitalizados con COVID prolongada
- Algoritmo de IA identifica a los pacientes hospitalizados con mayor riesgo de morir por COVID-19
- Estudio evalúa el impacto de la COVID-19 sobre la gammagrafía de ventilación/perfusión
- Sensor de sudor detecta biomarcadores claves que suministran una alarma precoz de la COVID-19 y la influenza
- Modelo de IA para seguimiento de COVID-19 predice mortalidad durante los primeros 30 días del ingreso
- ECG puede señalar pacientes hospitalizados con COVID-19 con riesgo más alto de muerte
- IA predice pronóstico de COVID a un nivel casi experto con base en tomografías computarizadas
- Examen de TC muestra evidencia de daño pulmonar persistente mucho tiempo después de neumonía por COVID-19
- Plataforma órgano-en-un-chip ayuda a diseñar estrategia para tratar complicaciones severas de la COVID-19
Canales
Cuidados Criticos
ver canal
Dispositivo electrónico portátil súper permeable permite monitorear bioseñales a largo plazo
Los dispositivos electrónicos portátiles se han convertido en una parte integral de la mejora de la salud y el estado físico al ofrecer un seguimiento continuo de señales f... Más
Nuevo hidrogel con capacidades mejoradas para tratar aneurismas y detener su progresión
Los aneurismas pueden desarrollarse en vasos sanguíneos de diferentes áreas del cuerpo, a menudo como resultado de aterosclerosis, infecciones, enfermedades inflamatorias y otros factores de riesgo.... Más
Nueva herramienta de IA predice eventos médicos para respaldar toma de decisiones clínicas en entornos de atención médica
En un nuevo estudio, los investigadores han demostrado el potencial de una nueva herramienta de inteligencia artificial (IA) para pronosticar la trayectoria de salud de un paciente mediante la predicción... Más
El magnetómetro de un teléfono inteligente utiliza hidrogel magnetizado para medir biomarcadores para el diagnóstico de enfermedades
Casi todos los teléfonos inteligentes modernos incorporan una brújula o un magnetómetro, que detecta el campo magnético de la Tierra, crucial para la navegación.... MásTécnicas Quirúrgicas
ver canal
Reemplazo vivo de rodilla podría revolucionar tratamiento de osteoartritis
La osteoartritis es la forma de artritis más frecuente, caracterizada por el deterioro progresivo del cartílago o el tejido protector que cubre los extremos de los huesos, lo que provoca... Más
Implante suave, flexible y sin baterías monitorea continuamente función de la vejiga
Millones de personas en todo el mundo luchan contra disfunciones de la vejiga debido a problemas nerviosos, cerebrales o de la médula espinal que surgen de afecciones congénitas como la espina... MásCuidados de Pacientes
ver canal
Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos
Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más
Innovación revolucionaria en esterilización de instrumentos quirúrgicos mejora significativamente rendimiento del quirófano
Una innovación revolucionaria permite a los hospitales mejorar significativamente el tiempo de procesamiento de instrumentos y el rendimiento en quirófanos y departamentos de procesamiento... Más
Cama para UCI de próxima generación ayuda a abordar necesidades complejas de cuidados intensivos
A medida que el entorno de cuidados intensivos se vuelve cada vez más exigente y complejo debido a las cambiantes necesidades de los hospitales, existe una necesidad apremiante de innovaciones que... MásTI
ver canal
Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca
Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más
Colaboración estratégica para desarrollar e integrar IA generativa en el cuidado de la salud
Los más altos expertos de la industria han subrayado el requisito inmediato de que los sistemas de salud y los hospitales respondan a las severas presiones de costos y márgenes.... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Mindray adquirirá empresa china de dispositivos médicos APT Medical
Un reciente análisis exhaustivo de la industria ha demostrado que el mercado cardiovascular mundial ha alcanzado una valoración de 56 mil millones de dólares. En particular, el segmento... Más