La IA pone en riesgo la información confidencial de la salud
Por el equipo editorial de HospiMedica en español Actualizado el 23 Jan 2019 |
Los avances en las tecnologías de inteligencia artificial (IA), como las incorporadas en los rastreadores de actividad, teléfonos inteligentes y relojes inteligentes, pueden amenazar la privacidad de los datos de salud personales.
Investigadores del Instituto de Tecnología de Massachusetts (MIT, Cambridge, MA, EUA), la Universidad de California Berkeley (UCB; EUA) y otras instituciones, realizaron un estudio transversal de los conjuntos de datos de la Encuesta Nacional de Examen de Salud y Nutrición de los EUA (NHANES, por sus siglas en inglés) para evaluar la posibilidad de volver a identificar los datos de actividad física, medidos en el acelerómetro, a los que se les eliminó información de salud geográfica y protegida, utilizando máquinas de vectores de soporte (SVM) y métodos de aprendizaje automático de bosque aleatorio.
Los datos medidos en el acelerómetro se recolectaron durante siete días continuos, con el resultado primario siendo la capacidad de los algoritmos de SVM lineal y de bosque aleatorio para hacer coincidir los datos demográficos y de la actividad física agregada con los números de registros específicos individuales, y el porcentaje de coincidencias correctas realizadas por cada algoritmo. Los resultados mostraron que el algoritmo de bosque aleatorio reidentificó exitosamente los datos demográficos y de actividad física agregada de un promedio de 94% de los adultos y de 86% de los niños. El algoritmo SVM lineal reidentificó con éxito los datos demográficos y de actividad física del 85% de los adultos y el 68% de los niños. El estudio fue publicado el 21 de diciembre de 2018 en la revista JAMA Network Open.
“Los resultados señalan un gran problema; si eliminas toda la información de identificación, no te protege tanto como piensas. Alguien más puede regresar y volver a colocarla si tiene el tipo de información correcta”, dijeron el autor principal, Anil Aswani, PhD, de la UCB, y sus colegas. “Se podría imaginar a Facebook reuniendo los datos de los pasos de la aplicación en su teléfono inteligente, luego comprando datos de atención médica de otra compañía y comparándolos con los dos. Podrían comenzar a vender publicidad basada en eso o podrían vender los datos a otros”.
“Los empleadores, los prestamistas hipotecarios, las compañías de tarjetas de crédito y otros podrían usar la IA para discriminar por estado de embarazo o discapacidad, por ejemplo. Lo que me gustaría ver de esto son las nuevas regulaciones o reglas que protegen los datos de salud; pero en realidad hay un gran impulso para incluso debilitar las regulaciones en este momento”, concluyó el Dr. Aswani. “El riesgo es que si las personas no son conscientes de lo que sucede, las reglas que tenemos se debilitarán. Y el hecho es que los riesgos de que perdamos el control de nuestra privacidad cuando se trata de atención médica en realidad aumentan y no disminuyen”.
Los bosques aleatorios son un método de aprendizaje conjunto que combina una gran cantidad de árboles de decisión para hacer predicciones. Aunque los modelos de bosques aleatorios son difíciles de interpretar, este enfoque es una de las técnicas de aprendizaje automático más exitosas porque a menudo tiene la mayor precisión. Linear SVM es un algoritmo de clasificación popular que tiene una velocidad de computación rápida, es fácil de interpretar y tiene buena exactitud.
Enlace relacionado:
Instituto de Tecnología de Massachusetts
Universidad de California Berkeley
Investigadores del Instituto de Tecnología de Massachusetts (MIT, Cambridge, MA, EUA), la Universidad de California Berkeley (UCB; EUA) y otras instituciones, realizaron un estudio transversal de los conjuntos de datos de la Encuesta Nacional de Examen de Salud y Nutrición de los EUA (NHANES, por sus siglas en inglés) para evaluar la posibilidad de volver a identificar los datos de actividad física, medidos en el acelerómetro, a los que se les eliminó información de salud geográfica y protegida, utilizando máquinas de vectores de soporte (SVM) y métodos de aprendizaje automático de bosque aleatorio.
Los datos medidos en el acelerómetro se recolectaron durante siete días continuos, con el resultado primario siendo la capacidad de los algoritmos de SVM lineal y de bosque aleatorio para hacer coincidir los datos demográficos y de la actividad física agregada con los números de registros específicos individuales, y el porcentaje de coincidencias correctas realizadas por cada algoritmo. Los resultados mostraron que el algoritmo de bosque aleatorio reidentificó exitosamente los datos demográficos y de actividad física agregada de un promedio de 94% de los adultos y de 86% de los niños. El algoritmo SVM lineal reidentificó con éxito los datos demográficos y de actividad física del 85% de los adultos y el 68% de los niños. El estudio fue publicado el 21 de diciembre de 2018 en la revista JAMA Network Open.
“Los resultados señalan un gran problema; si eliminas toda la información de identificación, no te protege tanto como piensas. Alguien más puede regresar y volver a colocarla si tiene el tipo de información correcta”, dijeron el autor principal, Anil Aswani, PhD, de la UCB, y sus colegas. “Se podría imaginar a Facebook reuniendo los datos de los pasos de la aplicación en su teléfono inteligente, luego comprando datos de atención médica de otra compañía y comparándolos con los dos. Podrían comenzar a vender publicidad basada en eso o podrían vender los datos a otros”.
“Los empleadores, los prestamistas hipotecarios, las compañías de tarjetas de crédito y otros podrían usar la IA para discriminar por estado de embarazo o discapacidad, por ejemplo. Lo que me gustaría ver de esto son las nuevas regulaciones o reglas que protegen los datos de salud; pero en realidad hay un gran impulso para incluso debilitar las regulaciones en este momento”, concluyó el Dr. Aswani. “El riesgo es que si las personas no son conscientes de lo que sucede, las reglas que tenemos se debilitarán. Y el hecho es que los riesgos de que perdamos el control de nuestra privacidad cuando se trata de atención médica en realidad aumentan y no disminuyen”.
Los bosques aleatorios son un método de aprendizaje conjunto que combina una gran cantidad de árboles de decisión para hacer predicciones. Aunque los modelos de bosques aleatorios son difíciles de interpretar, este enfoque es una de las técnicas de aprendizaje automático más exitosas porque a menudo tiene la mayor precisión. Linear SVM es un algoritmo de clasificación popular que tiene una velocidad de computación rápida, es fácil de interpretar y tiene buena exactitud.
Enlace relacionado:
Instituto de Tecnología de Massachusetts
Universidad de California Berkeley
Últimas TI noticias
- Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca
- Colaboración estratégica para desarrollar e integrar IA generativa en el cuidado de la salud
- Solución de quirófanos habilitada para IA ayuda a hospitales a maximizar la utilización y desbloquear la capacidad
- IA predice cáncer de páncreas tres años antes del diagnóstico a partir de registros médicos de los pacientes
- Primer sistema de autorizaciones médicas personalizadas de IA generativa totalmente autónoma reduce el retraso en la atención
- Según un estudio, registros médicos electrónicos pueden ser clave para mejorar la atención al paciente
- IA entrenada para biomarcadores vocales específicos podría predecir con precisión enfermedad de arterias coronarias
- Inteligencia artificial detecta las fracturas en los rayos X con exactitud
- Lectura capacitada por IA aumenta la exactitud de la mamografía
- Herramienta estadística predice los picos de COVID-19 en todo el mundo
- Sistema inteligente para detectar la fiebre y los contactos ayuda a que los negocios puedan reabrir
- Tecnología nueva permite la identificación a través de una máscara
- Servicio de ciberseguridad protege los dispositivos médicos de ataques
- Inteligencia artificial puede detectar los niveles de glucosa a través del ECG
- Implante neural suave de control inalámbrico estimula las células del cerebro
- Stent pequeño de polímero podría tratar las estenosis uretrales pediátricas
Canales
Cuidados Criticos
ver canal
Dispositivo electrónico portátil súper permeable permite monitorear bioseñales a largo plazo
Los dispositivos electrónicos portátiles se han convertido en una parte integral de la mejora de la salud y el estado físico al ofrecer un seguimiento continuo de señales f... Más
Nuevo hidrogel con capacidades mejoradas para tratar aneurismas y detener su progresión
Los aneurismas pueden desarrollarse en vasos sanguíneos de diferentes áreas del cuerpo, a menudo como resultado de aterosclerosis, infecciones, enfermedades inflamatorias y otros factores de riesgo.... Más
Nueva herramienta de IA predice eventos médicos para respaldar toma de decisiones clínicas en entornos de atención médica
En un nuevo estudio, los investigadores han demostrado el potencial de una nueva herramienta de inteligencia artificial (IA) para pronosticar la trayectoria de salud de un paciente mediante la predicción... Más
El magnetómetro de un teléfono inteligente utiliza hidrogel magnetizado para medir biomarcadores para el diagnóstico de enfermedades
Casi todos los teléfonos inteligentes modernos incorporan una brújula o un magnetómetro, que detecta el campo magnético de la Tierra, crucial para la navegación.... MásTécnicas Quirúrgicas
ver canal
Reemplazo vivo de rodilla podría revolucionar tratamiento de osteoartritis
La osteoartritis es la forma de artritis más frecuente, caracterizada por el deterioro progresivo del cartílago o el tejido protector que cubre los extremos de los huesos, lo que provoca... Más
Implante suave, flexible y sin baterías monitorea continuamente función de la vejiga
Millones de personas en todo el mundo luchan contra disfunciones de la vejiga debido a problemas nerviosos, cerebrales o de la médula espinal que surgen de afecciones congénitas como la espina... MásCuidados de Pacientes
ver canal
Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos
Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más
Innovación revolucionaria en esterilización de instrumentos quirúrgicos mejora significativamente rendimiento del quirófano
Una innovación revolucionaria permite a los hospitales mejorar significativamente el tiempo de procesamiento de instrumentos y el rendimiento en quirófanos y departamentos de procesamiento... Más
Cama para UCI de próxima generación ayuda a abordar necesidades complejas de cuidados intensivos
A medida que el entorno de cuidados intensivos se vuelve cada vez más exigente y complejo debido a las cambiantes necesidades de los hospitales, existe una necesidad apremiante de innovaciones que... MásPruebas POC
ver canal
Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso
Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos
Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más
Laboratorio portátil permitirá identificación de infecciones bacterianas más rápida y económica en el punto de necesidad
La resistencia a los antimicrobianos (RAM) es la falta de respuesta de las bacterias a un determinado antibiótico debido a mutaciones o genes de resistencia que la especie ha adquirido.... MásNegocios
ver canal
Mindray adquirirá empresa china de dispositivos médicos APT Medical
Un reciente análisis exhaustivo de la industria ha demostrado que el mercado cardiovascular mundial ha alcanzado una valoración de 56 mil millones de dólares. En particular, el segmento... Más